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ABSTRACT 
The prediction of fatigue crack growth is an important element of effective 

fracture control for metallic structures and mechanical components, especially in 
the aerospace industry. The prediction techniques available and applied today are 
mostly based on fatigue crack growth measurements determined in constant ampli- 
tude testing. However, while many service loadings are constant amplitude, many 
more loadings are random amplitude. This report is concerned with an investiga- 
tion to determine which statistics of random loadings are relevant to fatigue crack 
closure. This report briefly reviews the fundamentals of random processes and crack 
closure, then it qualitatively discusses the relevance of certain random process pa- 
rameters to the crack closure calculation. A course for further research is outlined. 
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1. INTRODUCTION 

The growth of fatigue cracks to fracture is the most critical life-limiting criterion 
for almost all metallic structures and mechanical components. This is especially true 
of aerospace structures and components because of the high stresses they experience. 
The risk posed by fatigue and fracture is significant and its management is known as 
fracture control. Two elements essential to effective fracture control are the control 
of the initial sizes of cracks, flaws, or crack-like defects, and the prediction of the 
growth of fatigue cracks. 

Initial crack sizes are typically controlled by manufacturing procedures and 
inspections. For example, to make a fastener hole one might either drill the hole 
directly, or first drill a smaller pilot hole and then ream it. The initial flaw sizes 
characteristic of the two processes might be expected to be different. The fastener 
holes would then be subjected to nondestructive inspection. There are several tech- 
niques commonly used, each has limitations on the size flaw that can be detected 
with confidence. Together the initial flaw size distribution and the flaw detectability 
define the probability distribution of flaw sizes that go into service. 

For fracture control purposes, the largest initial flaw size expected to pass 
through manufacturing and inspection into service is chosen as the starting point 
for fatigue crack growth calculations. In order to facilitate accurate and consistent 
calculations, NASA has developed and distributed a computer code called FLAGRO 
(Forman et al., 19861. This program automatically computes the increments of 
crack growth for the specified loading, and continues the calculations until the 
crack reaches its final critical size and shape. The fatigue loading is specified by a 
“loading spectrum,” which is a tabulation of the number of stress cycles occuring 
in different stress ranges. 

Standard loading spectra have been developed for various applications, for ex- 
ample, the NASA Goddard Space Flight Center’s spectrum developed for payloads 
carried by the Space Shuttle. The growth increment for a given stress cycle is de- 
termined by “linear damage accumulation theory,” which means that any effects 
related to potential interactions between fatiguing loads are ignored. 

Load interaction effects have been extensively documented for overloads in- 
troduced into constant amplitude crack growth tests. It is observed that a large 
tensile overload will cause a reduction in the crack growth rate for some time after 
the overload. This behavior is accounted for by crack closure theory which states 
that an overload leaves behind residual stresses which hold the crack closed for a 
portion of the subsequent stress cycles. The effective amplitude of the subsequent 
stress cycles and the corresponding growth rate are thereby reduced. Hence, in 
some loadings load interaction effects may be quite important. 

Many fatigue loadings, especially in the aerospace industry, are actually ran- 
dom processes for which the interaction effects are probably significant. So it is 
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not surprising that members of industry have recently asked NASA to add load in- 
teraction effects to FLAGRO's capabilities. This capability should make the crack 
growth predictions more accurate. Furthermore, since the dominant effect of load 
interactions is to prolong fatigue life, this would have a beneficial impact on fu- 
ture designs via weight reductions. It would also enable the certification of existing 
structures for longer life extensions, which is emerging as a critical issue for NASA 
on both the Space Shuttle and the Space Station. 

Two types of approaches to the random loading problem are found in the 
liter at ure: cycle-by-cycle calculations and calibrations to characteristic stresses. In 
the cycle-by-cycle approach, crack growth is calculated one cycle at a time with 
the order of cycles preserved. The crack growth rate for each cycle is determined 
from constant amplitude fatigue tests, and load interactions are accounted for by 
reducing the effective stress range by a factor related to plastic zone size, e.g., 
Wheeler [reference] and Willenborg [reference]. 

In the characteristic stress approach, the crack growth rate under random load- 
ing is re-calibrated to a characteristic value of the stress intensity factor, typically 
the root-mean-square (RMS) value. The sequence of loads is lost, and a new crack 
growth rate curve must be generated for each new loading. The crack growth rate 
curve is typically reported as the growth per flight, da /dF,  for example. 

However, before industry adopts a "nonlinear damage accumulation theory", 
the impact on fracture control safety margins should be assessed so that the prob- 
ability of fracture is not radically changed. The currently established scheme for 
fracture control is based on and calibrated to a long experience base. Certain proba- 
bilities of fracture are achieved by these practices and have been accepted implicitly 
by the engineering community. If one element of the scheme is perturbed, other 
elements must also be adjusted. For example, if one could predict longer fatigue 
lives with greater certainty, one might be able to tolerate larger initial flaws, but 
the accuracy of the inspection may have to be increased in order to maintain the 
same probability of fracture. 

Therefore, the random loading fatigue problem is really two-fold. First, a better 
understanding of the mechanisms of fatigue crack growth under random loading is 
necessary so that more accurate crack growth predictions can be made. Second, 
a better understanding of the true safety margins (i.e., probabilities of fracture) 
achieved by current practices is necessary so that new practices may be confidently 
introduced. This research project is concerned only with the prediction aspect of 
the random loading problem. Understanding the safety margins would logically be 
a second project. 

This report examines the interplay between random loadings and fatigue crack 
closure as a first step in defining a research program on random loading fatigue. 
Section 2 provides background on random loadings and crack closure. Section 3 
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examines the prediction of crack closure under known variable amplitude fatigue 
loadings. Section 4 then extrapolates the concepts to random loadings. Section 5 
presents a course for future research. 

2. BACKGROUND 

This section briefly reviews the basic concepts of random loadings and fatigue 
crack closure. Due to the limited space available, a comprehensive literature review 
is not attempted. 

2.1 Random Loading Statistics 

Figures la  and l b  show samples of two different processes which might represent 
the fatigue loading on a crack. The theory of random processes is well known. 
We will only briefly headline the important concepts below. For a more in-depth 
treatment a number of standard texts are available, e.g., Bendat and Piersol [1986). 

The probability that a random process X(t) will be found below a value zo at an 
arbitrary time t o  is given by the marginal probability distribution function (PDF) 
of the process, denoted Fx(z0). The expected value or mean, E[X(t)] = px(t) ,  
and the variance, a%(t), are the most important statistics of the process and are 
generally time dependent. The square root of the variance is the standard deviation, 

The normal (or Gaussian) distribution is commonly applied to random pro- 
cesses of engineering interest. It has two parameters, the mean, p, and the variance, 
a2. Its equation is 

ax ( t ) .  

A process with this PDF is called a Gaussian process. 

The probability that, at two times tl  and t2, X(t) will be found below z1 
and 5 2 ,  repectively, is given by the joint PDF, Fx(tl),x(t2)(x1,z2). Higher order 
distributions may also be defined, but are not used very often. The joint PDF is 
used to calculate the autocorrelation function which is defined as the expected value 
of X(t1) times X(t2), i.e., Rx(t1,tz) = E[X(tl)X(t2)]. 

If the joint PDF remains constant over all time, the process is called station- 
ary. Otherwise, the process is nonstationary. For stationary processes, the mean 
is constant, px(t)  = px, the variance is constant, a$(t) = o$, and the autocor- 
relation function depends only on the length of the time difference T = t2 - t l ,  
Rx(T) = E[X(t)X(t + T)]. Note that for T = 0, the autocorrelation function is 
equal to the mean-square value of the process, Rx(0) = 0% + px. 2 
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It is necessary to subtract the mean value of the process before any further 
analysis. The linearly transformed process then has a mean of zero. If necessary, 
the mean can always be added back. Then the mean-square value given by the 
autocorrelation function at T = 0 is equal to the variance, Rx(0)  = u$, and the 
square root of the mean-square value (RMS) is equal to the standard deviation, ax. 

The random processes of greatest engineering significance are Gaussian, sta- 
tionary, and have zero-means. Once one has obtained the autocorrelation of such 
a process all the important statistical properties can be derived from it. These 
processes are assumed for the remaining discussion unless otherwise indicated. 

The spectral density function, S x ( w ) ,  is the Fourier transform of the autocor- 
relation function, and thus contains the same statistical information. While the 
autocorrelation function has great mathematical significance, the spectral density 
function is more useful to engineers because it gives us the distribution of energy 
in a random process as a function of frequency, w .  Figures 2a and 2b show the 
spectral density functions for the processes shown previously in Figures la  and lb ,  
respectively. In Figure 2a it is easily seen that the energy of the first signal is con- 
centrated in a very narrow band of frequencies. This is called a narrowband process 
and it manifests itself as a sine wave of slowly varying random amplitude and phase 
shift. In Figure 2b it is seen that the energy of the second signal is spread out over a 
wider band of frequencies. This is called a wideband process and it manifests itself 
as a highly irregular waveform, what is commonly thought of as “random”. 

From the properties of Fourier transforms, the area under the spectral density 
function is equal to the value of the autocorrelation function at T = 0, which is 
equal to the variance of a zero-mean process, 0:. The square root of the area is 
thus the RMS of the process, equal to the standard deviation, ax. 

The area under the spectrum is a special case of a moment of the spectral 
density function. More generally, the k-th moment of the spectrum is given by 

The area is the zero-eth moment, k = 0. Other moments, particularly k = 2 
and k = 4, are used to calculate the rate at  which the process crosses different 
levels (level crossings), such as, z = 0 (zero-crossings), and the rate at which peaks 
occur in the process. The ratio of the rate of zero-crossings to the rate of peaking 
is known as the irregularity factor, a, and is a measure of the bandwidth of the 
process, 0 5 a 5 1. Note that a = 1 is the ideal theoretical narrowband process. 
Also note that E = d n  and k = l/a are also used as bandwidth measures. 

The spectral moments are also used to determine the probability distribution 
of extrema, i.e., peaks and valleys. These distributions depend on a and on u;. 
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The author has derived approximate distributions for the height of the rise from 
a valley to the next peak and for the amplitude of rainflow counted fatigue cycles 
which depend on a and u: as well as on other spectral moments [Ortiz and Chen, 
19871. These distributions are useful for calculating linear fatigue damage. 

Not all random processes of interest to engineers are stationary. In general, 
nonstationary processes are much more difficult to handle and must be treated on 
a case-by-case basis. Standard approaches to these problems exist, but are beyond 

.the scope of this section. 

2.2 Fatigue Crack Closure 

The correlation between the rate of fatigue crack growth, d a / d N ,  and the cyclic 
range of the elastic stress intensity factor, A K  = Kmaz - Kmin, is well established. 
However, to understand crack closure, it is necessary to reconsider the evolution 
of the plastic strain field as the crack grows longer. We summarize below the key 
elements of the theory, first proposed by Elber [1971]. For an extensive review, see 
Banerjee [ 1984). 

On loading the crack from Kmin to Kmaz, the material at the crack tip under- 
goes monotonic plastic straining and the crack tip extends. The zone of plastically 
deformed material has a width of approximately 

(+I2 plane stress 

plane strain 
(3) 

Note that, since K m a z  typically depends on S,az@, rp  depends linearly on a 
and quadratically on Sma,. Figure 3 illustrates the extent of the monotonic plastic 
wake for constant amplitude fatigue loading. 

When the crack is unloaded, the singularity at the crack tip continues to exist 
until the crack faces meet, i.e., until the crack is closed. The crack tip stress field 
reverses. However, due to the Bauschinger effect the effective stress intensity on 
unloading is only half as much as on loading. Thus, the reversed plastic zone is only 
one-fourth (i.e., one-half squared) the width of the monotonic plastic zone. Figure 
3 also illustrates the extent of the reversed plastic zone. 

One result of this plastic deformation is obviously crack extension. Another, 
less obvious, result is that there is net stretching of the plastic zone. This creates 
a compressive residual stress field in the plastic wake behind the crack tip. When 
the crack is unloaded, the crack faces meet before the load is fully removed, closing 
the crack. The stress at which this occurs is called the crack closing stress. On re- 
loading, the crack remains closed until sufficient load is applied to open the crack, 
the crack opening stress, Sop (or Kop). Experimental evidence indicates that the 
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opening and closing stresses are approximately the same. The importance of crack 
closure to fatigue crack growth is that there is no plastic deformation at the crack 
tip until the crack opens. In effect, AK is reduced to AK,ff = Kmaz - Kop. 

Various researchers have attempted to predict Sop for constant amplitude load- 
ings. The most extensive study to date is by Newman [1984], who fit the following 
equations to finite element model results: 

(4) 
A0 4- AIR + A2R2 + A3R3 
Ao + A I R  

for R 2 0 
for -1 5 R < 0 

Sop/Smaz = 

where 
A0 = (0.825 - 0 . 3 4 ~ ~  + 0 . 0 5 ~ ~ ~ )  [ C O S ( ? T S ~ ~ ~ / ~ O O ] ” ~  

A1 = (0.415 - 0.07l~~)SmaZ/00 

A2 = 1 -A0 - A1 - A3 

A3 = 2Ao + A1 - 1 

The opening stress is seen to depend on Smaz, the R-ratio, R = Smin/Smaz = 
Kmin/Kmaz, and o0, the material’s flow stress, which Newman takes to be the - 
average of the uniaxial yield stress and the uniaxial tensile strength, and on a, a 
“constraint” factor on tensile yielding. The material is assumed to yield when the 
applied stress is equal to suo. For plane stress, CY = 1, and for plane strain, CY = 3. 

Crack closure has been used to explain the dependence of da/dN on the R-ratio, 
which is approximated by Forman’s law 

(5) 

(6) 

(7) 

( 8 )  

CAKm 
da/dN = 

(1 - R ) K c  - AK (9) 

According to the crack closure theory, da/dN should correlate with the effective 
range of the stress intensity factor, AK,ff = KmaZ - Kop, which is somewhat less 
than the nominal AK = Kmaz - Kmin. Limited experimental results show good 
agreement. 

Crack closure theory may also be used to explain the load interaction effects 
which occur when stress ranges of different amplitudes are intermingled in a load 
history. According to the theory, an occasional tensile overload in an otherwise 
constant amplitude stress history creates a residual stress field which increases the 
crack opening stress over a portion of the crack path ahead of the crack tip. This 
reduces AK,ff and the corresponding da/dN until the crack grows out of the 
affected region. This effect is known as “crack growth retardation”. Similarly, an 
occasional compressive overload can reduce the opening stress and thereby increase 
da/dN. This is known as “crack growth acceleration”. 
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The majority of theoretical and experimental work on crack closure has been 
done on constant amplitude loadings. In the following sections we discuss the pre- 
diction of crack closure under variable amplitude and random amplitude loadings. 

3. CRACK OPENING STRESS FOR VARIABLE LOADING 

The subject of crack closure under variable amplitude loadings is still very new. 
In the occasional overload problem, the crack opening stress obviously varies as the 
crack grows. In a complex variable amplitude loading, such as shown in Figure 4, 
the crack opening stress could vary significantly during the load history, but there 
are reasons why it may not. In this section we will try to understand why Sop 
might or might not vary significantly during a variable amplitude loading, and how 
it might be predicted. 

3.1 Direct Approach 

Consider a variable amplitude loading such as shown in Figure 4. Suppose this 
same loading block is repeated over and over. And for the moment, suppose that the 
crack does not grow during a single application of the block. It is evident that the 
maximum extent of the monotonic plastic zone is determined by the highest stress 
peak, Smazh. The net plastic stretching is also governed by the lowest stress valley, 
Sminl. Therefore, the crack opening stress should be a function of the R-ratio: 

Now let us relax the restriction that the crack does not grow during a single 
application of the loading block. If the crack grows “slowly” during the block, the 
net plastic stretching and, hence, the crack opening stress will still be controlled by 
Rlh. By “slowly” we mean the crack tip should not grow out of the plastic zone 
during the block. The plastic wake behind the crack tip for the variable amplitude 
loading should appear to be smooth, and should be the same wake as for constant 
amplitude loading from Sminl to Smazh. Figure 5 illustrates the concept and shows 
a counter-example for which the crack does grow out of the maximum plastic zone, 
as for example in the occasional overload problem. 

Thus, if the crack is growing slowly, Sop will remain constant, the plastic wake 
will be the same as for constant amplitude loading from Sminl to Smazh, and pre- 
dictable using Rlh in the relationships found in constant amplitude tests. The crack 
growth rate can then be predicted from AK,ff. The method described has been 
proposed by Schijve [ 19801. The correlation of his predictions with experimental 
results appears promising, but is not perfect. The errors in Schijve’s predictions are 
most probably due to using Elber’s original equations for Sop. Perhaps Newman’s 
more recent equations would give better results. 
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3.2 Iterative Approach 

One potential problem with the above approach has to do with the following. 
In a variation of occasional overload testing, the overload is followed immediately 
by a second identical overload. The observed retardation is longer than for a single 
overload [Banerjee, 19841. Since the plastic zone theoretically is not enlarged by 
a significant amount, this suggests that the second overload somehow strengthens 
the compressive residual stresses. One infers that the crack opening stress observed 
in constant amplitude tests is not necessarily the same as observed in occasional 
overload testing. So perhaps one should not use the highest peak and the lowest 
valley to define the equivalent constant amplitude R-ratio, but rather the second 
highest peak, or an average? 

Newman [unpublished] suggests the following iterative procedure: 

First iteration: 

1. Find the highest peak, Smazh, and the lowest valley, Sminl. 

2. Calculate an initial using Sminl, Smazh and 

3. For each stress cycle, calculate the initial effective stress ranges 

Second iteration: 

4. Calculate the weighted average stress range given by 

where m is Paris exponent and only "positive" cycles, totaling N T ,  are counted. 

5.  Calculate the average effective maximum stress 

- 
6. Calculate the final effective opening stress Sop using the lowest valley Sminl, 

the average effective maximum Sma, and the final effective R-ratio 
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7. Calculate the final effective stress ranges with which to calculate AKefj 

Note that the first three steps correspond to Schijve's method. The next three 
steps represent a second iteration to get an average effective R-ratio in step 6. Step 
7 is then the calculation of the effective A K .  

3.3 Discussion 

At this point it is impossible to say which of the two methods presented is 
better. Again, the rate at which the crack grows through the plastic zone of the 
"overload" is of great importance. If the crack is growing very slowly, it might take 
several or many blocks to get through the plastic zone. There could be a reinforcing 
of the plastic zone by repeated applications of the loading block. In this case the 
plastic wake would be similar to the constant amplitude loading wake. Schijve's 
approach would appear to be reasonable under these circumstances. 

On the other hand, if the crack is growing so quickly or if the loading block 
is so long that the crack tip advances significantly during a block, there might not 
be any reinforcing of the plastic zone. In this case the plastic wake would not be 
similar to the constant amplitude loading wake. In fact, the wake would be irregular 
and Sop would vary non-monotonically. In this case, Newman's approach might be 
an acceptable approximation. The conditions under which either method would be 
valid must be established by experiment. 

So far we have assumed that the same variable amplitude block is repeated 
over and over again. However, in real loadings each variable amplitude block would 
be different in many respects. In fact, the loading blocks would likely be random. 
This leads us to extend the discussion to random amplitude loadings in the next 
sect ion. 

4. CRACK OPENING STRESS FOR RANDOM LOADING 

From our discussion so far it is evident that the crack opening stress, Sop, for 
a random amplitude loading will probably vary randomly. That is, Sop is also a 
random process. For a stationary random loading, Sop should also be stationary. 
For a nonstationary random loading, Sop could still be stationary because it should 
vary more slowly than the loading. 

For the purpose of discussion, we first assume that the stress process, X ( t ) ,  is 
stationary. Assuming the process is Gaussian, which is often the case, the mean 
value, px,  and the variance, o;, define the marginal probability distribution. These 
would be standard statistics of the process which should always be available. The 
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spectral density function and the bandwidth, e.g., a, should also be readily available. 
The general question is, “How do these parameters affect crack growth and S,,?” In 
particular, we ask how AK and R-ratio might be measured for stationary random 
loadings. We later discuss the treatment of nonstationary random loadings, some 
of the practical considerations in designing a testing program, and aspects of the 
calculations of the statistics of random loading fatigue crack growth. 

4.1 Random Loading Stress Ranges 

As with constant amplitude fatigue crack growth, we should expect influences 
of A K  and R-ratio. Taking A K  first, a natural question is, “Which should da/dN 
correlate with, AK,,,, or AKr,,?” Note that these two parameters are actually 
the expected values of A K  raised to the powers one and two, respectively. That is, 

and 
AK,,, = E[ AK’] 1/2 

Because it depends on a random process, the crack growth rate under random 
loading is also random. To correlate experimental data, we should probably be 
looking at the average or expected growth rate, E[da/dN]. Assuming the Paris 
fatigue crack growth law is valid, at least in first approximation, we have da/dN = 
CAKm. Thus, the expected value of da/dN is 

E[da/dN] = CE[AKm] (19) 

We should thus expect da/dN to correlate with 

where m is dependent on the material. 

Hibberd and Dover [1977] show that this gives better correlations than AK,,,, 
or AKrmS. Barsom [1973] reports that the rms value works well for steels, for which 
it happens that m = 2; this also fits the hypothesis. 

The distribution of the cyclic ranges, AK, must be known in order to calculate 
the expected value of AKm. The approximate distribution of rises/falls or the 
approximate distribution of rainflow cycles derived by the author [Ortiz and Chen, 
19871 could be used for this distribution. These distributions are known to depend 
on the spectral shape, especially on the irregularity factor, a. 

There is still some question as to which cycle counting method is applicable to 
fatigue crack growth. For example, Schijve [1980] uses the rising ranges, but Sunder 
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et al. [1984] present fractographic evidence favoring rainflow. This is an important 
point that needs to be resolved. 

4.2 Random Loading R-Ratio 

For a random loading R-ratio, Q = Kmean/Krma and 7 = Smean/Srms have 
been proposed and are essentially the same. One might think of Q or 7 as measuring 
the number of standard deviations the mean is above zero. A large Q or 7 (e.g., 
greater than 3) implies that the probability of X ( t )  crossing below zero is small. 
Hence, these ratios are indirect measures of the ratio of lowest valley to highest 

We could propose more direct measures of the random Rlh. For instance, we 

peak, Rlh. 

could define - 
PX - Box 
Px i- pax 

Rp = 

Assuming a Gaussian process, &=1.28 would be, for example, the ratio of the load 
which X ( t )  is above 90% of the time and below 90% of the time. However, for the 
same loading this would take on different values depending on the percentage level 
indicated by p. 

A more meaningful and stable ratio is the ratio of the average valley to the 
average peak, R G , ~  

E-- - - 
mrn,maz 

If the process is Gaussian, this calculation 
for peaks and valleys. 

(22) 
E[ Smin] 

E[ smaz]  

would use the well known distributions 

Keep in mind however, that the thing we really wish to measure is the maximum 
plastic zone width, which we think governs the crack opening stress. Since the 
maximum width is caused by extreme values of the peaks and valleys, we should 
be looking for a statistic defined by the extremes, rather than the averages. The 
distinction could be significant if the distributions of peaks and valleys are highly 
skewed or asymmetical. (A single parameter indicating the skewness is the ratio of 
the “largest” peak to the average peak.) So perhaps the ratio should be of the 90% 
valley to the 90% peak, for example. But, we would encounter the same difficulty 
regarding the percentage level as we have with Rp above. Furthermore, at this 
point in time, we do not know for what percentage level we should set the ratio. 

A third approach might be taken. From the definition of the constant amplitude 
R-ratio, R = Smin/Smaz, one can show 
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For random loadings we must substitute for A S  and S,,,. Again, either the average 
values, A S  and S m ,  or the pa values, e.g., 90% values, could be used, with the 
same difficulties associated with p as before. And the question of which method to 
count cycles, AS,  needs to be resolved. 

mental investigation should be establish which R-ratio is valid. 

- 

Other definitions of R could easily be proposed. A main goal of any experi- 

4.3 Nonstationary Loadings 

We now extend our scope to nonstationary random loadings. Many of the 
loadings of interest to us are nonstationary, e.g., there are ground-to-air-to-ground 
(GAG) cycles for aircraft and changes in vibration level for payloads during launch. 
This creates two new problems: the probability distributions indicated above are 
no longer valid, and the crack opening stress may no longer be stationary. The 
treatment of nonstationary processes must be on a case by case basis. However, we 
can address these problems in general terms. 

Regarding the probability distributions, we are still interested in the distribu- 
tions of cycles, peaks and valleys. However, the underlying distribution of X ( t )  
should not be expected to be Gaussian. It is likely that the highest peaks and low- 
est valleys are associated with “deterministic”, i.e., non-random, phenomena. For 
example, the lowest valley in a GAG cycle may correspond to the plane at rest on 
the ground, while the highest load may correspond to a certain flight maneuver. 
It is evident that one must study the physics of each situation in order to under- 
stand these distributions. These distributions would then by applied as before if 
the opening stress is still stationary. 

Regarding the stationarity of the crack opening stress, it is obvious that in the 
occasional overloading problem the crack opening stress process is nonstationary. 
That is, the distribution of the process changes with time. The cause of this is the 
sudden change in the plastic wake width associated with the overloadings, such a,s 
illustrated in Figure 5. If overloads are extremely rare, as is the case in occasional 
overload testing, the analysis appears to become very complicated. However, if the 
overloads happen on a fairly regular basis, such as, once every flight, then the crack 
opening stress process might still be considered stationary, if the crack grows slowly 
between overloads. This is probably the case for most variable amplitude loadings 
of practical interest. (Besides, if the rarely occuring overload is a possibility, one 
probably would not want to depend on it occuring and causing retardation for a 
fatigue life prediction, unless the occurence of the overload could be controled and 
made to happen.) 

Thus, the analysis for most nonstationary loadings would be very similar to 
that for stationary loadings, except for a little more effort. The question that needs 
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to be resolved is how slow the crack has to grow in order to maintain a smooth 
plastic wake. 

4.4 Practical Considerations for Testing 

There are a number of practical considerations which must also be addressed if 
one is to design a testing program for random loadings. These include the truncation 
level and the programmed load sequence. 

Theoretically, the Gaussian process X ( t )  has no upper or lower bounds, i.e., it 
may go to infinity in either direction. Naturally, this does not happen in practice and 
cannot be reproduced in the laboratory. In laboratory tests, the peak loadings are 
truncated to some finite level which is often specified by the ratio of the maximum 
stress to the RMS, called the clipping ratio or crest factor. It has been shown that 
truncating the highest loads leads to faster crack growth, due to lower opening 
stresses. Because of the critical impact of the largest peak on crack closure, the 
truncation level should always be explicitly stated. Unfortunately, many researchers 
do not recognize how important this is and do not state it, which makes their results 
ambiguous. Even though the choice of truncation level has been shown to be very 
important, we have no rational way of choosing it at this time. This definitely is 
something to be studied. 

Another practical consideration has to do with programmed load sequences. In 
many laboratory tests, the load ranges are arranged non-randomly in a programmed 
sequence either from smallest to largest, or vice versa. This could have a significant 
impact on crack closure. The sequence of loads should be followed as faithfully as 
possible in a test, rather than rearranging them in such programmed sequences. 

4.5 Probability Calculations 

Finally, regarding the calculation of the statistics of fatigue crack growth, i.e., 
the mean and variance of the time to failure, there are several things to note. 

First, one should keep in mind that it is the residual stress behind the crack tip 
that controls the opening stress. So Sop acting for a certain load cycle is determined 
by loads acting some time previously. Since it is likely to take a reasonably long 
time for the crack to grow through the plastic zone, it is likely that the stress 
process acting on the crack tip would be statistically independent of the concurrent 
crack opening stress process. Independence of the two processes leads to certain 
mathematical simplifications. 

A possible exception to this is for highly narrowband loadings which maintain 
high correlations between peak loads for long times. It is possible to imagine situ- 
ations for which the concurrent stress and opening stress processes are also highly 
correlated (either positively or negatively). The assumption of independence should 
be made with care. 

25-15 



Second, this is a highly nonlinear problem. Therefore, the average opening 
stress would not necessarily lead to the average fatigue life prediction. If we want 
to directly calculate the average fatigue life using a constant value for Sop, we would 
need to use a value other than the expected value. This implies that we might expect 
large (potentially unconservative) biases from deterministic calculations of fatigue 
life. 

Third, there is a stochastic modeling question near and dear to the author’s 
heart. Should the opening stress process be modeled as a stochastic process evolving 
in time, Sop(t) ,  or in space along the crack path, Sop(a)? Since the opening stress is 
to be mathematically manipulated with the applied stress process to get the effective 
AS,  we would prefer the time model, Sop( t ) ,  for computational simplicity. On the 
other hand, since the opening stress is actually related to the residual stresses behind 
the crack tip, the space model, Sop(a) ,  might be preferred on physical grounds. This 
is the sort of thing professors and graduate students think about . . . . 

5. CONCLUSIONS 

Regarding the prediction of random loading fatigue crack growth using crack 

0 Current fracture control procedures which apply linear damage accumulation 
theory neglect crack closure. In this approach, the theoretically applied load 
spectrum is normalized so that the largest peak is equal to the maximum design 
load, i.e., the maximum design stress is seen once each time the spectrum is 
applied. Since the maximum design load should occur only rarely, perhaps 
never, this is thought to be “conservative”, more linear damage is calculated 
than would be expected. On the other hand, if crack closure theory is applied, 
the maximum design load reduces the rate of growth by increasing the crack 
opening stress. Repeated application of this load would be unconservative! 
Veers et al. [ 19871 demonstrate the unconservativeness of repeated applications 
of such a programmed loading. 

Regarding the course of future research, we make the following suggestions for 
theoretical and experimental work. 

closure for fracture control analysis, we make the following observation. 

0 There is a basic need for understanding the statistical nature of common ran- 
dom loadings. Are they stationary? Are they nonstationary? What are the 
distributions of cycles, peaks and valleys? From these statistics we would like 
to be able to predict whether or not crack closure is likely to have a significant 
impact on the fatigue life. 

0 The correlation of fatigue crack growth rate data with random loading equiv- 
alents for AK and R, e.g., AKm and R G , ~ ,  should be experimentally 
established for stationary Gaussian processes. Different spectral bandwidths 
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and spectral shapes should be investigated. (Beware that extra care should be 
taken with narrowband spectra because of the persistance of high correlations 
between peaks.) The loadings should be chosen so that the maximum theoreti- 
cal differences in crack growth rate are calciilated using the different candidates 
for AK and R. This includes differences due to cycle counting methods. 

0 The random loading AK and R, concepts should then be extended to nonsta- 
tionary random loadings. Experimental correlations should be made with the 
particular loading spectra of interest. 

0 Truncation levels should be investigated. What is the relationship between the 
highest peak and the second highest peak? Can general rules regarding the 
truncation level and the amount of retardation lost be established? 

0 An interesting idea which deserves exploration is the visualization of the plastic 
wake. It would be facinating and informative to correlate crack growth rate 
with the structure of the wake, for instance as depicted in Figure 5.  How 
might the wake be seen? Photographs against grids have been used to show 
gross plastic deformation. Some sort of surface treatment or etching might 
show the actual extent of plastically deformed material in finer detail. 

0 Finally, the impact of adopting crack closure models into fatigue crack growth 
analysis for fracture control should be invesitgated. Using a more accurate 
crack growth analysis for random loadings places a greater burden on inspection 
to screen initial flaws. The confidence in the inspection should be greater. How 
much greater? An effort should be made to quantify the probability of fracture 
using current fracture control practices and using crack closure. The theoretical 
probability of fracture should be kept constant, unless a change can be justified. 
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Figure 1. Sample random processes: (a) narrowband; (b) wideband: 

w 
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Figure 2. 
narrowband; (b) wideband. 

Spectral density functions ,(one-sided) for processes in Figure 1: (a) 
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reverse 4 
p l a s t i c  zone 

Figure 3. 
the envelope of monotonic plastic zone and the reversed plastic zone. 

Illustration of the plastic wake for constant amplitude loading showing 

Figure 4. Example variable amplitude fatigue loading. 
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Figure 5 .  
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Illustration of the plastic wake for: (a) constant amplitude loading 
from 0 to SI; (b) constant amplitude loading from 0 to S2 greater than SI; (c) 
constant amplitude loading from 0 to SI with occasional overloads to S2. 
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